AMÉLIE COMTOIS, University of Ottawa Weighted Limits in V-Graded Categories

Categories graded by a monoidal category \mathcal{V} generalize both \mathcal{V} -actegories and \mathcal{V} -enriched categories without requiring any additional properties of \mathcal{V} . However, \mathcal{V} -graded categories are themselves also categories enriched in a monoidal category $\hat{\mathcal{V}}$ whose objects are presheaves on \mathcal{V} . In this talk, we define a notion of weighted limit for \mathcal{V} -graded categories that specializes to recover the familiar notion of weighted limit for enriched categories. Our \mathcal{V} -graded weighted limits involve weights valued in \mathcal{V} rather than $\hat{\mathcal{V}}$, and they form a special class of $\hat{\mathcal{V}}$ -enriched weighted limits. This allows us to prove that in the special case where \mathcal{V} is biclosed and the \mathcal{V} -graded categories involved are \mathcal{V} -enriched, we recover precisely the familiar notion of weighted limit for \mathcal{V} -enriched categories, and they also give rise to a notion of weighted limit in \mathcal{V} -actegories that admits a particularly simple description. For arbitrary \mathcal{V} -graded categories, we develop both a convenient concrete formulation of weighted limits as well as an equivalent abstract description as certain \mathcal{V} -graded representations, and we explore examples of \mathcal{V} -graded weighted limits including \mathcal{V} -graded powers, conical limits, and weighted pullbacks. This is joint work with Rick Blute and Rory Lucyshyn-Wright.