DEEPANSHU PRASAD, Queen's University

Galois coverings and mutation of G-orbits

For an algebraically closed field \mathbb{K} , we consider a Galois G-covering $\mathcal{B} \to \mathcal{A}$ between locally bounded \mathbb{K} -categories given by bound quivers, where G is torsion-free and acts freely on the objects of \mathcal{B} . We define the notion of $(G, \tau_{\mathcal{B}})$ -rigid subcategory and of support $(G, \tau_{\mathcal{B}})$ -tilting pairs over \mathcal{B} -mod. These are the analogues of the similar concepts in the context of a finite-dimensional algebra, where we additionally require that the subcategory be G-equivariant. When \mathcal{A} is a finite-dimensional algebra, we show that the corresponding push-down functor $\mathcal{F}_{\lambda} : \mathcal{B}$ -mod $\to \mathcal{A}$ -mod sends $(G, \tau_{\mathcal{B}})$ -rigid subcategories (respectively support $(G, \tau_{\mathcal{B}})$ -tilting pairs) to $\tau_{\mathcal{A}}$ -rigid modules (respectively support $\tau_{\mathcal{A}}$ -tilting pairs). We further show that there is a notion of mutation for support $(G, \tau_{\mathcal{B}})$ -tilting pairs over \mathcal{B} -mod. Mutations of support $\tau_{\mathcal{A}}$ -tilting pairs and of support $(G, \tau_{\mathcal{B}})$ -tilting pairs commute with the push-down functor. We derive some consequences of this, and in particular, we derive a τ -tilting analogue of the result of P. Gabriel that locally representation-finiteness is preserved under coverings. Finally, we prove that when the Galois group G is finitely generated free, any rigid \mathcal{A} -module (and in particular $\tau_{\mathcal{A}}$ -rigid \mathcal{A} -modules) lies in the essential image of the push-down functor.