SIMON KUTTNER, Carleton University

Applications of the subset sum problem over finite abelian groups
Given a finite abelian group G, a finite set D, and a mapping $f: D \rightarrow G$, we find the number of r-subsets $S \subseteq D$ where for $b \in G$,

$$
\sum_{x \in S} f(x)=b
$$

We obtain simple exact expressions when f is an abelian group homomorphism. When $G=\mathbb{F}_{q}$, we extend known results when $D \in\left\{\mathbb{F}_{q}, \mathbb{F}_{q}^{*}\right\}$ and $f(x)=x^{N}$, which include quadratic and semiprimitive cases. We count degree n monic polynomials over \mathbb{F}_{q} with r distinct roots in a set $D \subseteq \mathbb{F}_{q}$ when the leading terms of degree at least $n-\ell$ are fixed. We obtain new formulas for $\ell=1$ when D is a multiplicative subgroup of \mathbb{F}_{q}^{*}, and for $\ell=2$ when D is an arbitrary subfield of \mathbb{F}_{q} with q odd.

