VIKTOR VIGH, University of Szeged

On random spherical disc-polygons
In 2017 Bárány, Hug, Reitzner and Schneider studied random spherical polytopes that are the spherical convex hull of n independent, uniform random points chosen from a half-sphere. They proved that expectation of the number of facets tends to a constant c_{d} that depends only on the dimension (as $n \rightarrow \infty$). In 2020 Fodor showed that if we choose independent uniform random points from a unit ball, then the expected number of the facets of the generated uniform random ball-polytope also tends to the constants c_{d} in any dimension. In this talk we connect these two results in the case when $d=2$, we study random spherical disc-polygons in a spherical cap of appropriate size, and show that expectation of the number of the edges tends to $c_{2}=\pi^{2} / 2$. We also extend the result to a more general case, where we choose the radnom points from a spherical convex disc with C^{2} smooth boundary.
This is a joint work with Kinga Nagy.
This research was supported by Hungarian NKFIH grant FK135392 and by project TKP2021-NVA-09. Project no. TKP2021-NVA-09 has been implemented with the support provided by the Ministry of Innovation and Technology of Hungary from the National Research, Development and Innovation Fund, financed under the TKP2021-NVA funding scheme.

