ANDRII ARMAN, University of Manitoba

Upper bounds on the chromatic number of low dimensional spaces

Let $\chi(\mathbb{E}^n)$ denote the chromatic number of the Euclidean space \mathbb{E}^n , i.e., the smallest number of colors needed to color points of \mathbb{E}^n so that no two points unit distance apart are of the same color.

In this talk I will present explicit constructions of colorings of \mathbb{E}^n based on sublattice coloring schemes and establish some new upper bounds. For example, I will provide the construction for the following bounds: $\chi(\mathbb{E}^5) \leq 140$, $\chi(\mathbb{E}^n) \leq 7^{n/2}$ for $n \in \{6, 8, 24\}$, and $\chi(\mathbb{E}^n) \leq 3^n$ for all $n \leq 38$ and n = 48, 49.

This talk is based on a joint work with Andriy Bondarenko, Andriy Prymak, and Danylo Radchenko.