ANDRII ARMAN, University of Manitoba
 Upper bounds on the chromatic number of low dimensional spaces

Let $\chi\left(\mathbb{E}^{n}\right)$ denote the chromatic number of the Euclidean space \mathbb{E}^{n}, i.e., the smallest number of colors needed to color points of \mathbb{E}^{n} so that no two points unit distance apart are of the same color.
In this talk I will present explicit constructions of colorings of \mathbb{E}^{n} based on sublattice coloring schemes and establish some new upper bounds. For example, I will provide the construction for the following bounds: $\chi\left(\mathbb{E}^{5}\right) \leq 140, \chi\left(\mathbb{E}^{n}\right) \leq 7^{n / 2}$ for $n \in\{6,8,24\}$, and $\chi\left(\mathbb{E}^{n}\right) \leq 3^{n}$ for all $n \leq 38$ and $n=48,49$.
This talk is based on a joint work with Andriy Bondarenko, Andriy Prymak, and Danylo Radchenko.

