FERENC FODOR, University of Szeged, Hungary
A central limit theorem for the area of random disc-polygons
We consider the following probability model of random disc-polygons. Let K be a convex disc in the Euclidean plane with at least C_{+}^{2} smooth boundary (twice continuously differentiable with everywhere positive curvature). Fix $r>0$ such that it is larger than the maximum radius of curvature of the boundary of K. Take n independent random points from K according to the uniform probability distribution. Let K_{n}^{r} be the intersection of all radius r closed circular discs that contain the random points. This object is called a (uniform) random disc-polygon, and it is known to be contained in K. Various asymptotic properties of K_{n}^{r} (as $n \rightarrow \infty$) have been determined before, including an asymptotic formula for the expectation of the area of K not covered by K_{n}^{r}, and also lower and upper bounds of matching orders of magnitude (in n) for the variance of the area of K_{n}^{r}. In this talk we present a quantitative central limit theorem for the area of K_{n}^{r} based on Stein's method. Joint work with Dániel Papvári (Szeged, Hungary).
Supported by the National Research, Development and Innovation Office - NKFIH K134814 grant. This research was also supported by project TKP2021-NVA-09. Project no. TKP2021-NVA-09 has been implemented with the support provided by the Ministry of Innovation and Technology of Hungary from the National Research, Development and Innovation Fund, financed under the TKP2021-NVA funding scheme.

