## TONY HADDAD, Université de Montréal

A coupling for the prime factors of a random integer
The sizes of large prime factors for a random integer $N$ sampled uniformly in $[1, x]$ are known to converge in distribution to a Poisson-Dirichlet process $\mathbf{V}=\left(V_{1}, V_{2}, \ldots\right)$ as $x \rightarrow \infty$. In 2002, Arratia constructed a coupling of $N$ and $\mathbf{V}$ satisfying $\mathbb{E} \sum_{i}\left|\log P_{i}-(\log x) V_{i}\right|=O(\log \log x)$ where $P_{1} P_{2} \cdots$ is the unique factorization of $N$ with $P_{1} \geqslant P_{2} \geqslant \cdots$ being all primes or ones. He conjectured that there exists a coupling for which this expectation is $O(1)$.
I will present a modification of his coupling which proves his conjecture, and show that $O(1)$ is optimal. As a corollary, I will provide a simpler proof of the arcsine law in the average distribution of divisors proved by Deshouillers, Dress and Tenenbaum in 1979. This is joint work with Dimitris Koukoulopoulos.

