LIAM OROVEC, University of Waterloo

Small Univoque Bases
For a positive number q, we say $\left(\varepsilon_{i}\right)$ is a q-expansion for x provided, $x=\sum_{i=1}^{\infty} \frac{\varepsilon_{i}}{q^{2}}$. Working over the alphabet $\mathcal{A}=$ $\{0,1, \ldots, M\}$ we look at finding, given a fixed positive real number x, the smallest base $q_{s}(x)$ for which x has a unique $q_{s}(x)$-expansion.
We will first establish the result for $x=1$. Then using relations between the representation of 1 under base $q_{s}(x)$ and the possible unique representation of real numbers we determine whether $q_{s}(x) \leq q_{s}(1)$ which will aid us in calculating the desired value.
This is a generalization of the work of D . Kong who established the results for $M=1$. The study of such bases is important as most x have an infinite number of representations under an arbitrary base q.

