JASON FANG AND ANTON MOSUNOV, University of Waterloo

A Lower Bound for the Area of the Fundamental Region of a Binary Form

Let

$$F(x,y) = \prod_{k=1}^{n} (\delta_k x - \gamma_k y)$$

be a binary form of degree $n \ge 1$, with complex coefficients, written as a product of n linear forms in $\mathbb{C}[x, y]$. Let

$$h_F = \prod_{k=1}^n \sqrt{|\gamma_k|^2 + |\delta_k|^2}$$

denote the height of F and let A_F denote the area of the fundamental region \mathcal{D}_F of F:

$$\mathcal{D}_F = \left\{ (x, y) \in \mathbb{R}^2 \colon |F(x, y)| \le 1 \right\}.$$

We prove that $h_F^{2/n}A_F \ge (2^{1+(r/n)})\pi$, where r is the number of roots of F on the real projective line \mathbb{RP}^1 , counting multiplicity.