JASON FANG AND ANTON MOSUNOV, University of Waterloo

A Lower Bound for the Area of the Fundamental Region of a Binary Form
Let

$$
F(x, y)=\prod_{k=1}^{n}\left(\delta_{k} x-\gamma_{k} y\right)
$$

be a binary form of degree $n \geq 1$, with complex coefficients, written as a product of n linear forms in $\mathbb{C}[x, y]$. Let

$$
h_{F}=\prod_{k=1}^{n} \sqrt{\left|\gamma_{k}\right|^{2}+\left|\delta_{k}\right|^{2}}
$$

denote the height of F and let A_{F} denote the area of the fundamental region \mathcal{D}_{F} of F :

$$
\mathcal{D}_{F}=\left\{(x, y) \in \mathbb{R}^{2}:|F(x, y)| \leq 1\right\}
$$

We prove that $h_{F}^{2 / n} A_{F} \geq\left(2^{1+(r / n)}\right) \pi$, where r is the number of roots of F on the real projective line $\mathbb{R P}^{1}$, counting multiplicity.

