MATEJA SAJNA, University of Ottawa
On the directed Oberwolfach problem for complete symmetric equipartite digraphs
The celebrated Oberwolfach problem, over 50 years old and in general still open, asks whether n participants at a conference can be seated at k round tables of sizes $t_{1}, t_{2}, \ldots, t_{k}$ for several meals so that each participant sits next to every other participant at exactly one meal, assuming that $t_{1}+t_{2}+\ldots+t_{k}=n$. This problem can be modeled as a decomposition of the complete graph K_{n} into 2-factors, each consisting of k disjoint cycles of lengths $t_{1}, t_{2}, \ldots, t_{k}$.
In this talk, we discuss the directed version for complete symmetric equipartite digraphs. Thus, we are interested in decomposing $K_{n[m]}^{*}$, the complete symmetric equipartite digraph with n parts of size m, into spanning subdigraphs, each a disjoint union of k directed cycles of lengths $t_{1}, t_{2}, \ldots, t_{k}$ (where $t_{1}+t_{2}+\ldots+t_{k}=m n$). Such a decomposition models a seating arrangement of $m n$ participants, consisting of n delegations of m participants each, at k tables of sizes $t_{1}, t_{2}, \ldots, t_{k}$ so that each participant sits to the right of each participant from a different delegation exactly once. Recent solutions to extensive cases of this problem for uniform cycle lengths will be presented.
This is joint work with Nevena Francetić.

