MAGDALENA GEORGESCU, n/a

Cuntz-Pimsner algebras arising from C^* -correspondences over commutative C^* -algebras

The Cuntz-Pimsner algebra construction produces a C^{*}-algebra from the data contained in a C^{*}-correspondence. Many other constructions — for example, crossed products $C(X) \rtimes_{\alpha} \mathbb{Z}$ — can be viewed through a Cuntz-Pimsner lens. As such, results and approaches from crossed products can inform investigations of some Cuntz-Pimsner algebras. In this talk, we will concentrate on C^{*}-algebras arising from C^{*}-correspondences over commutative algebras C(X).

Specifically, consider X an infinite compact metric space, \mathcal{V} a locally trivial vector bundle over X and $\alpha : X \to X$ a homeomorphism (often assumed minimal). We can construct a C^{*}-correspondence \mathcal{E} over C(X) from the module of sections of \mathcal{V} , where we use the homeomorphism α to twist the left multiplication. As we shall see, many tractable and interesting C^{*}-correspondences over C(X) do in fact arise in this manner.

In this talk, I will discuss some of the structural properties and classification of the resulting Cuntz-Pimsner algebra $\mathcal{O}(\mathcal{E})$. Under the additional assumption that \mathcal{V} is a line bundle the Cuntz-Pimsner algebra is a generalized crossed product, suggesting additional means of investigation. For Cuntz-Pimsner algebras arising from line bundles we can construct orbit-breaking subalgebras of $\mathcal{O}(\mathcal{E})$ and show that they are centrally large in the sense of Phillips.

This is based on joint work with Maria Stella Adamo, Dawn Archey, Marzieh Forough, Ja A Jeong, Karen Strung and Maria Grazia Viola.