BRANDON CROFTS, Teachers College, Columbia University
Counting Solutions of $a^{2}+p b c=0$ in a Cube
For a prime p, let $s_{p}(n)$ be the number of integer triples (a, b, c) which satisfy $a^{2}+p b c=0$, where a, b, c are bounded by natural number n, and p is prime. Some sequences of this form have had limited numbers of terms contributed to the OEIS, while others have had no contributions at all. A non-recursive, generalized algorithm was theorized and developed, to produce the first n terms of the sequence relating to the equation $a^{2}+p b c=0$.

