ERAN ASSAF, Dartmouth College Existence of Invariant Norms in p-adic Representations of $GL_2(F)$ with Large Weights Let F be a finite extension of \mathbb{Q}_p and let q be the cardinality of its residue field. The Breuil-Schneider conjecture for $G=GL_n(F)$ predicts a necessary and sufficient condition for the existence of an invariant norm on $\rho\otimes\pi$, where ρ is an irreducible algebraic representation of G and π is an irreducible smooth representation of G over \overline{F} . The conjecture is still open, even when n=2, if π is a principal series representation. In this case, assuming π is unramified and $\rho=\operatorname{Sym}^k\otimes \det^m$, it had been verified by Breuil and De leso when k< q, and these results have been extended to the range $k< q^2/2$, imposing some technical conditions on π and k. In the talk we will provide a new proof of these results, and remove some of the technical conditions.