LUKE POSTLE, University of Waterloo *Further progress towards Hadwiger's conjecture*

In 1943, Hadwiger conjectured that every graph with no K_t minor is (t-1)-colorable for every $t \ge 1$. In the 1980s, Kostochka and Thomason independently proved that every graph with no K_t minor has average degree $O(t\sqrt{\log t})$ and hence is $O(t\sqrt{\log t})$ -colorable. Recently, Norin, Song and I showed that every graph with no K_t minor is $O(t(\log t)^{\beta})$ -colorable for every $\beta > 1/4$, making the first improvement on the order of magnitude of the $O(t\sqrt{\log t})$ bound. Here we show that every graph with no K_t minor is $O(t(\log t)^{\beta})$ -colorable for every $\beta > 0$; more specifically, they are $O(t(\log \log t)^{\beta})$ -colorable.