MARTA LEWICKA, University of Pittsburgh

On the Monge-Ampere system

The Monge-Ampere equation $\det \nabla^2 u = f$ posed on a N=2 dimensional domain, has a natural weak formulation that appears as the constraint condition in the Γ -limit of the dimensionally reduced non-Euclidean elastic energies. This formulation reads: $\operatorname{curl}^2(\nabla v \otimes \nabla v) = -2f$ and it allows, via the Nash-Kuiper scheme of convex integration, for constructing multiple solutions that are dense in $C^0(\omega)$, at the regularity $C^{1,\alpha}$ for any $\alpha < 1/7$.

Does a similar result hold in higher dimensions N>2? Indeed it does, but one has to replace the Monge-Ampere equation by a "Monge-Ampere system", altering $curl^2$ to the corresponding operator whose kernel consists of the symmetrised gradients of N-dimensional displacement fields. We will show how this Monge-Ampere system arises from the prescribed Riemannian curvature problem by matched asymptotic expansions, similarly to how the prescribed Gaussian curvature problem leads to the Monge-Ampere equation in 2d, and prove that its flexibility at $C^{1,\alpha}$ for any $\alpha < 1/(N^2 + N + 1)$.