TRENT MARBACH, Ryerson University
Balanced equi-n-squares
We define a d-balanced equi- n-square $L=\left(l_{i j}\right)$, for some divisor d of n, as an $n \times n$ matrix containing symbols from \mathbb{Z}_{n} in which any symbol that occurs in a row or column, occurs exactly d times in that row or column. We show how to construct a d-balanced equi- n-square from a partition of a Latin square of order n into $d \times(n / d)$ subrectangles. In design theory, L is equivalent to a decomposition of $K_{n, n}$ into d-regular spanning subgraphs of $K_{n / d, n / d}$. We also study when L is diagonally cyclic, defined as when $l_{(i+1)(j+1)}=l_{i j}+1$ for all $i, j \in \mathbb{Z}_{n}$, which corresponds to cyclic such decompositions of $K_{n, n}$ (and thus α-labellings).
We identify necessary conditions for the existence of (a) d-balanced equi- n-squares, (b) diagonally cyclic d-balanced equi- n squares, and (c) Latin squares of order n which partition into $d \times(n / d)$ subrectangles. We prove the necessary conditions are sufficient for arbitrary fixed $d \geq 1$ when n is sufficiently large, and we resolve the existence problem completely when $d \in\{1,2,3\}$.
Along the way, we identify a bijection between α-labellings of d-regular bipartite graphs and, what we call, d-starters: matrices with exactly one filled cell in each top-left-to-bottom-right unbroken diagonal, and either d or 0 filled cells in each row and column. We use d-starters to construct diagonally cyclic d-balanced equi- n-squares, but this also gives new constructions of α-labellings.

