MAHSA SHIRAZI, University of Regina
On a generalization of set-wise intersection of perfect matchings
Two perfect matchings P and Q of a graph on $2 k$ vertices are said to be set-wise t-intersecting if there exist edges P_{1}, \cdots, P_{t} in P and Q_{1}, \cdots, Q_{t} in Q such that the union of edges P_{1}, \cdots, P_{t} has the same set of vertices as the union of Q_{1}, \cdots, Q_{t} has. In this talk I will present an extension of the famous Erdős-Ko-Rado (EKR) Theorem to set-wise t-intersecting families of perfect matching for $t=2$ and $t=3$. In particular I will prove the following:
The size of the largest set of set-wise 2 and 3 -intersecting perfect matchings in $K_{2 k}$ with $k \geq 6$ is $(2 k-5)!!$, and $(2 k-7)!!$, respectively.

