KAREN MEAGHER, University of Regina
2-Partially Intersecting Partitions
An ℓ-partition of a set of size $n=k \ell$ can be expressed as a set of ℓ disjoint sets, $P=\left\{P_{1}, P_{2}, \ldots, P_{\ell}\right\}$. Further, an ℓ-partition is uniform if $\left|P_{i}\right|=k$ for all $i=1, \ldots, \ell$. Two uniform ℓ-partitions $P=\left\{P_{1}, P_{2}, \ldots, P_{\ell}\right\}$ and $Q=\left\{Q_{1}, Q_{2}, \ldots, Q_{\ell}\right\}$ are said to be 2-partially intersecting if there exist an i and j such that $\left|P_{i} \cap Q_{j}\right| \geq 2$. There are many different notions of intersection for partitions, and this particular type of intersection is connected to several different problems in design theory. In this talk I will show how an algebraic approach can be used to determine the size of the largest collection of uniform ℓ-partitions of a $k \ell$-set in which any two partitions are 2-partially intersecting.

