DON KREHER, Michigan Technological University
Steiner's problem ... Bussey's solution
A set-system of order N is a pair (X, \mathcal{B}), where X is N-element set of points and \mathcal{B} is a collection of subsets of X called blocks.
In 1852, Professor Dr. J. Steiner of Berlin, asked for which number N does there exist a set system containing no pairs that has order N and maximum block size k satisfying

1. no block properly contains another block, and
2. for all $t=2,3, \ldots, k-1$ every t-set that does not contain a block is contained in exactly one block of size $(t+1)$.

The only known solution with maximum block size at least 5 was an infinite family exhibited by W.H. Bussey from the University of Minnesota in 1914. He provides a construction for each $k \geq 5$ a set-system of order $N=2^{k-1}-1$ and maximum block size k satisfying Steiner's conditions. In 1984, H. Hanani, apparently unaware of Bussey's solution, gives exactly the same solution. In this talk I will discuss Bussey's solution and report on the progress that Charlie Colbourn, Patric Östegård and I have made in constructing another solution.

