SOPHIE STEVENS, Johann Radon Institute

Attaining the exponent 5/4 for the sum product problem in finite fields
The sum-product problem is to show, for any finite set A, that one of the sum set $A+A$ or product set $A A$ must be large in cardinality. Progress on this problem over finite fields lags behind its counterpart in the reals, where notably in 1997 Elekes used the Szemeredi-Trotter theorem to obtain the exponent $5 / 4$; this exponent has since advanced in the reals. In a joint work with Ali Mohammadi, we show that if $A \subseteq \mathbb{F}_{p}$ has cardinality $|A| \ll p^{1 / 2}$ then we match Elekes' bound. That is, we show that

$$
\max \{|A \pm A|,|A A|\} \lesssim|A|^{\frac{5}{4}}
$$

This improves the exponent of $11 / 9$ by Rudnev, Shakan and Shkredov from 2018.

