MELVYN NATHANSON, LEHMAN COLLEGE (CUNY)

Sidon sets for linear forms

Let $\varphi(x_1, \ldots, x_h) = c_1 x_1 + \cdots + c_h x_h$ be a linear form with coefficients in a field \mathbf{F} and let V be a vector space over \mathbf{F} . A nonempty subset A of V is a φ -Sidon set if $\varphi(a_1, \ldots, a_h) = \varphi(a'_1, \ldots, a'_h)$ implies $(a_1, \ldots, a_h) = (a'_1, \ldots, a'_h)$ for all h-tuples $(a_1, \ldots, a_h) \in A^h$ and $(a'_1, \ldots, a'_h) \in A^h$. There exist infinite Sidon sets for the linear form φ if and only if the set of coefficients of φ has distinct subset sums. In a normed vector space with φ -Sidon sets, every infinite sequence of vectors is asymptotic to a φ -Sidon set of vectors. Results on p-adic perturbations of φ -Sidon sets of integers and bounds on the growth of φ -Sidon sets of integers are also obtained.