LISA SAUERMANN, Institute for Advanced Study
Finding solutions with distinct variables to systems of linear equations over \mathbb{F}_{p}
Let us fix a prime p and a homogeneous system of m linear equations $a_{j, 1} x_{1}+\cdots+a_{j, k} x_{k}=0$ for $j=1, \ldots, m$ with coefficients $a_{j, i} \in \mathbb{F}_{p}$. Suppose that $k \geq 3 m$, that $a_{j, 1}+\cdots+a_{j, k}=0$ for $j=1, \ldots, m$ and that every $m \times m$ minor of the $m \times k$ matrix $\left(a_{j, i}\right)_{j, i}$ is non-singular. Then we prove that for any (large) n, any subset $A \subseteq \mathbb{F}_{p}^{n}$ of size $|A|>C \cdot \Gamma^{n}$ contains a solution $\left(x_{1}, \ldots, x_{k}\right) \in A^{k}$ to the given system of equations such that the vectors $x_{1}, \ldots, x_{k} \in A$ are all distinct. Here, C and Γ are constants only depending on p, m and k such that $\Gamma<p$.
The crucial point here is the condition for the vectors x_{1}, \ldots, x_{k} in the solution $\left(x_{1}, \ldots, x_{k}\right) \in A^{k}$ to be distinct. If we relax this condition and only demand that x_{1}, \ldots, x_{k} are not all equal, then the statement would follow easily from Tao's slice rank polynomial method. However, handling the distinctness condition is much harder, and requires a new approach. While all previous combinatorial applications of the slice rank polynomial method have relied on the slice rank of diagonal tensors, we use a slice rank argument for a non-diagonal tensor in combination with combinatorial and probabilistic arguments.

