ERNIE CROOT, Georgia Tech

On a problem of Graham, Erdos, and Pomerance on the p-divisibility of central binomial coefficients
This is joint work with Hamed Mousavi and Maxie Schmidt. We show that for any set of $r \geq 1$ sufficiently large primes p_{1}, \ldots, p_{r}, there are infinitely many integers n, such that $\binom{2 n}{n}$ is divisible by these primes with multiplicity of size at most $o(\log n)$. This is equivalent to saying we can find integers n whose base p_{1}, base p_{2}, \ldots, and base p_{r} expansions all simultaneously have almost all their digits "small". Doing this for 2 primes at once (the case $r=2$) is not difficult (Erdos proved this version); but it is significantly more challenging to prove it for $r \geq 3$; in fact, Graham offered a large sum of money - and considered it to be one of his favorite problems - to solve the case $\mathrm{r}=3$ for the primes 3,5 , and 7 . Our proof involves bypassing a deep, unsolved problem in diophanine approximation and algebraic number theory, called Schanuel's Conjecture, through the use of a number of methods from analytic number theory and additive combinatorics (and properties of generalized Vandermonde and totally positive matrices).

