Let $\mathbb{D} \subset \mathbb{C}$ be the closed unit disk and $T \subset \mathbb{D}$ be the unit circle. The classical Rudin-Carleson theorem asserts that if $S \subset T$ is a closed subset of Lebesgue measure zero, then for every complex continuous function f on S there exists a continuous function g on \mathbb{D} holomorphic in its interior \mathbb{D} such that $g|_S = f$ and $\max_{\mathbb{D}} |g| \leq \max_S |f|$.

In the talk, I present analogs of this interpolation theorem for continuous maps into complex manifolds.