LEO GOLDMAKHER, Williams College

Some refinements of Artin's conjecture
In 1927, Artin gave a heuristic argument that 2 is a primitive root $(\bmod p)$ approximately 37% of the time. No one has been able to make his argument rigorous, and even the weaker problem of showing that 2 is a primitive root (mod p) for infinitely many p remains open.
Artin's initial heuristic has been generalized, giving rise to conjectures on the proportion of primes p for which any given integer is a primitive root $(\bmod p)$; the most general form of this is now known as Artin's conjecture. In this talk I will describe several new conjectures (joint with Greg Martin, UBC) on the proportion of the time a given integer is "almost" a primitive root $(\bmod \mathrm{p})$. Our conjectures subsume Artin's conjecture, and are borne out in computations. I'll also prove that our conjectures hold on average, and derive some consequences of this. For example, we obtain a new proof that Artin's conjecture holds on average, a result originally due to Goldfeld.

