AMIR AKBARY, University of Lethbridge On the average value of a function of the residual index

For a prime p and a positive integer a relatively prime to p, we denote $i_{a}(p)$ as the index of the subgroup generated by a in the multiplicative group \mathbb{F}_{p}^{\times}. Under certain conditions on the arithmetic function $f(n)$, we prove that the average value of $f\left(i_{a}(p)\right)$, as a and p vary, is

$$
\sum_{d=1}^{\infty} \frac{g(d)}{d \varphi(d)}
$$

where $g(n)=\sum_{d \mid n} \mu(d) f(n / d)$ is the Möbius inverse of f and $\varphi(n)$ is the Euler function. In the special case of $f(n)=\log n$, our result establishes, unconditionally, on average over a, a conjecture proposed by Bach, Lukes, Shallit, and Williams, and also stated by Fomenko. This is joint work with Adam Felix.

