BILL MARTIN, Worcester Polytechnic Institute

Linked systems of symmetric designs and real mutually unbiased bases

Let Γ be a finite undirected graph with vertex set X partitioned into w subsets each of size v:

$$X = X_1 \dot{\cup} X_2 \dot{\cup} \cdots \dot{\cup} X_w$$

We say that Γ is a *linked system of symmetric* (v, k, λ) *designs with* w *fibres* if Γ satisfies the following three properties: • no edge of Γ has both ends in the same fibre X_i ;

• the subgraph of Γ induced between any two distinct fibres X_i and X_j is the incidence graph of some symmetric (v, k, λ) design;

• for any three distinct indices i, j, k from $\{1, \ldots, w\}$ and for any $a \in X_i$ and any $b \in X_j$ the number of common neighbors of a and b lying in X_k depends only on whether or not (a, b) is an edge of Γ and not on the choice of a and b or on the choice of i, j, k.

A set of w mutually unbiased bases in \mathbb{R}^d ("w real MUBs") is a collection of orthogonal bases $\mathcal{B}_1, \ldots, \mathcal{B}_w$ for \mathbb{R}^d enjoying the property that $|\mathbf{x} \cdot \mathbf{y}|$ is constant whenever \mathbf{x} and \mathbf{y} are chosen from distinct bases \mathcal{B}_i and \mathcal{B}_j from our collection.

In this talk we determine when a linked system of symmetric designs can be converted into a set of real MUBs and give partial results in the reverse direction. The talk is based, in part, on joint work with my student Brian Kodalen.