RENATE SCHEIDLER, University of Calgary
Computing Quadratic Function Fields With High 3-Rank Via Cubic Field Tabulation
We present extensive numerical data on global quadratic function fields whose class group has positive 3-rank, obtained via an adaptation to function fields of a method due to Belabas for finding quadratic number fields of high 3-rank. Our algorithm generates fields of minimal discriminant degree for any given 3-rank. It relies on previous work by he authors for tabulating cubic function fields, but incorporates a significant computational speed-up when the quadratic extension is ramified at infinity. We provide numerical data for discriminant degree up to 11 over the finite fields of respective orders $5,7,11$ and 13. We compare our data with a variety of heuristics on the density of such fields of a given 3-rank by Friedmann-Washington, Ellenberg et al, Achter, and Garton. In most cases, our our data supports the validity of these heuristics. This is joint work with Mike Jacobson and Pieter Rozenhardt.

