ANTON MOSUNOV, University of Waterloo

Some computational evidence on the heuristics of Guy and Selfridge
Let $s(n)$ denote the sum of the proper divisors of a positive integer n. An aliquot sequence is a sequence of the form $n, s(n), s_{2}(n)=s(s(n)), s_{3}(n)=s(s(s(n)))$, and so on. In 2003, Bosma and Kane proved that the geometric mean of $s(2 n) /(2 n)$ exists and is slightly less than one. Recently, Carl Pomerance demonstrated that the geometric means of $s(s(2 n)) / s(2 n)$ and $s(2 n) /(2 n)$ for $n>1$ match. Both of these results give a strong probabilistic evidence that most of the aliquot sequences starting with an even number are bounded. In our work, we show that the geometric means of $s_{k}(2 n) / s_{k-1}(2 n)$ for $2 n \leq X$ exceed one for $X=2^{37}$ and $k=6,7,8,9,10$ when averaged over all n such that $s_{k}(2 n)>0$. Moreover, as k increases, the geometric means grow, too. However, as k remains fixed, the geometric means decrease with the growth of X, possibly approaching the geometric mean of $s(2 n) /(2 n)$. This can be counted as a computational evidence both for and against the heuristics of Guy and Selfridge given in 1976 that most of the aliquot sequences starting with an even number should be unbounded.

