NILS BRUIN, Simon Fraser University
Obstructions for primitive solutions to $A x^{3}+B y^{3}=C z^{2}$
It is classical that the only obstructions for homogeneous quadratic equations to have primitive solutions (x, y, z) are local; the Hasse principle holds. The picture for $A x^{p}+B y^{q}=C z^{r}$ is much more complicated. A result by Beukers shows that if $1 / p+1 / q+1 / r>1$ then the primitive solutions correspond to rational points on finitely many genus 0 curves (subject to certain local conditions). However, as for instance $x^{2}+31 y^{2}=5 z^{3}$ shows, obstructions to primitivity are not just local anymore: there is also a class group that can provide obstructions.
For other exponents, obstructions are no longer directly explained by class groups. We will explore some statistics in the case $(p, q, r)=(3,3,2)$ This is joint work with Patrick McMahon.

