JAVAD MASHREGHI, Laval University

A group structure on $\mathbb D$ and its application for composition operators on model spaces

We present a group structure on \mathbb{D} via the automorphisms which fix the point 1. Through the induced group action, each point of \mathbb{D} produces an equivalence class which turns out to be a Blaschke sequence. We show that the corresponding Blaschke products are minimal/atomic solutions of the functional equation $\psi \circ \varphi = \lambda \psi$, where λ is a unimodular contant and φ is an automorphism of the unit disc. We also characterize all Blaschke products which satisfy this equation and study its application in the theory of composition operators on model spaces K_{Θ} .