KEITH JOHNSON, Dalhousie University

Integer valued polynomials on rings of integer matrices
Let $M_{n}(Z)$ denote the ring of $n \times n$ matrices with integer coefficients. If a polynomial $f(x)$ with rational coefficients has the property that $f(A) \in M_{n}(Z)$ for any $A \in M_{n}(Z)$ what can be said about f ? That it need not necessarily have integer coefficients is demonstrated, for example, by the polynomial $x^{2}(x-1)^{2}\left(x^{2}+x+1\right) / 2$ for $n=2$. This talk will present some recent results about the ring of polynomials satisfying this integrality property.

