ABDULLAH AL-SHAGHAY, Dalhousie University

Analogues of the Binomial Coefficient Theorems of Gauss and Jacobi
Two of the more well known congruences for binomial coefficients modulo p, due to Gauss and Jacobi, are related to the representation of an odd prime (or an integer multiple of the odd prime) p as a sum of two squares (or an integer linear combination of two squares). These two congruences, along with many others, have been extended to analogues modulo p^{2} and are well documented in the literature. More recently, J. Cosgrave and K. Dilcher have extended the congruences of Gauss, Jacobi, and a related one due to Hudson and Williams to their analogues modulo higher powers of p. We will have a look at the methods used by Cosgrave and Dilcher and discuss their application to obtaining more congruences for binomial coefficients.

