PETER DANZIGER, Ryerson University

On the Hamilton-Waterloo Problem with odd orders

Given non-negative integers v, m, n, α, β , the Hamilton-Waterloo problem asks for a factorization of the complete graph K_v into $\alpha \ C_m$ -factors and $\beta \ C_n$ -factors. We may assume without loss of generality that $n \ge m$. Clearly, $n, m \ge 3$ odd, $m \mid v$, $n \mid v$ and $\alpha + \beta = (v-1)/2$ are necessary conditions. In this talk we present results that show that these necessary conditions are sufficient when v is a multiple of nm, except possibly when $\beta = 1$ or 3, or v = mn and $\alpha < \frac{n-1}{2}$.

This is joint work with Andrea Burgess and Tommaso Traetta. I will discuss some of the history of the problem and present the main result, Tommaso Traetta will be presenting some further results on which this one rests in his talk.