PETER DANZIGER, Ryerson University

On the Hamilton-Waterloo Problem with odd orders
Given non-negative integers v, m, n, α, β, the Hamilton-Waterloo problem asks for a factorization of the complete graph K_{v} into αC_{m}-factors and βC_{n}-factors. We may assume without loss of generality that $n \geq m$. Clearly, $n, m \geq 3$ odd, $m \mid v$, $n \mid v$ and $\alpha+\beta=(v-1) / 2$ are necessary conditions. In this talk we present results that show that these necessary conditions are sufficient when v is a multiple of $n m$, except possibly when $\beta=1$ or 3 , or $v=m n$ and $\alpha<\frac{n-1}{2}$.
This is joint work with Andrea Burgess and Tommaso Traetta. I will discuss some of the history of the problem and present the main result, Tommaso Traetta will be presenting some further results on which this one rests in his talk.

