DAVID PIKE, Memorial University of Newfoundland Equitably Coloured BIBDs

A balanced incomplete block design (BIBD) with parameters v, k and λ consists of a v-set V of points together with a set \mathcal{B} of k-subsets of V called blocks, such that each 2 -subset of V is a subset of exactly λ blocks of \mathcal{B}. A colouring of a design (V, \mathcal{B}) is a function $f: V \rightarrow C$, where $C=\left\{c_{1}, \ldots, c_{\ell}\right\}$ is a set of elements called colours. A weak colouring of a design is a colouring f such that $|\{f(x): x \in B\}|>1$ for each $B \in \mathcal{B}$ (i.e., each block has at least two colours). An equitable colouring is a colouring such that for each block $B \in \mathcal{B}$ the number of points of any colour $c_{i} \in C$ is within 1 of the number of points of any other colour $c_{j} \in C$ (i.e., $-1 \leq\left|B \cap C_{i}\right|-\left|B \cap C_{j}\right| \leq 1$, where $C_{t}=\left\{x \in V: f(x)=c_{t}\right\}$ denotes those points of V having colour c_{t}). We determine necessary and sufficient conditions for equitably colourable BIBDs. This is joint work with Robert Luther.

