OLEKSIY KLURMAN, Université de Montréal
Weighted Bernstein and Markov-Nikolskii type inequalities for monotone polynomials of order k
For $n \geq m \geq 0$, we denote

$$
M_{q, p}(n, m):=\sup _{P_{n} \in \mathbb{P}_{n}} \frac{\left\|P_{n}^{(m)}\right\|_{L_{q}[-1,1]}}{\left\|P_{n}\right\|_{L_{p}[-1,1]}}
$$

where \mathbb{P}_{n} denotes the set of all algebraic polynomials of degree $\leq n$. The asymptotic behaviour of $M_{q, p}(n, m)$ was studied by many authors.
In 1926, S. Bernstein showed that

$$
\sup _{P_{n} \in \triangle_{n}} \frac{\left\|P_{n}^{\prime}\right\|}{\left\|P_{n}\right\|}= \begin{cases}\frac{(n+1)^{2}}{4}, & \text { if } n=2 k+1 \\ \frac{n(n+2)}{4}, & \text { if } n=2 k\end{cases}
$$

where the supremum is taken over all monotone polynomials of degree $\leq n$.
Motivated by this result, T. Erdelyi considered analogous problem for $M_{q, p}^{(l)}(n, m)$, where the supremum is taken over all absolutely monotone polynomials of order l and determined the exact asymptotic in the case $p \leq q$.
At the time, A. Kroo and J. Szabados found the exact Markov factors for monotone polynomials of order k in L_{1} and L_{∞} norms.
In this talk, I will discuss the sharp order of $M_{q, p}^{(l)}(n, m)$ for all values of p, q. I will also discuss the weighted analog of Berstein result for monotone polynomials.

