GERMAN DZYUBENKO, Yu.A.Mitropolskiy International Mathematical Center of NAS of Ukraine Nearly comonotone approximation of periodic functions
Suppose that a continuous 2π-periodic function f on the real axis changes its monotonicity at points y_{i} : $-\pi \leq y_{2 s}<y_{2 s-1}<$ $\ldots<y_{1}<\pi, s \in \mathbb{N}$, on each period. In our resent work, for each $n \geq N$, a trigonometric polynomial P_{n} of order $c n$ is found such that: P_{n} changes its monotonicity, like f, everywhere except small intervals

$$
\left(y_{i}-\pi / n, y_{i}+\pi / n\right)
$$

and

$$
\left\|f-P_{n}\right\| \leq c(s) \omega_{3}(f, \pi / n),
$$

where N is a constant depending only on $\min _{i=1, \ldots, 2 s}\left\{y_{i}-y_{i+1}\right\}, c$ and $c(s)$ are constants depending only on $s, \omega_{3}(f, \cdot)$ is the modulus of continuity of the 3 -rd order of the function f, and $\|\cdot\|$ is the max-norm.

