MAXIME BERGERON, University of British Columbia

The Topology of Representation Spaces

Let Γ be a finitely generated group and let G be a reductive complex linear algebraic group (e.g. $SL_n\mathbb{C}$). The representation space $Hom(\Gamma, G)$ carved out of a finite product of copies of G by the relations of Γ has many interesting topological features. From the point of view of algebraic topology, these features are easier to understand for the compact subspace $Hom(\Gamma, K) \subset$ $Hom(\Gamma, G)$ where K is a maximal compact subgroup of G (e.g. SU_n). Unfortunately, the topological spaces $Hom(\Gamma, G)$ and $Hom(\Gamma, K)$ usually have very little to do with each other; for instance, some of the connected components of $Hom(\Gamma, G)$ may not even intersect $Hom(\Gamma, K)!$ In this talk, I will discuss exceptional classes of groups Γ for which $Hom(\Gamma, G)$ and $Hom(\Gamma, K)$ happen to be homotopy equivalent, thereby allowing one to compute otherwise inaccessible topological invariants.