JEANNETTE JANSSEN, Dalhousie University

Uniform linear embeddings of random graphs
A symmetric, measurable function $w:[0,1]^{2} \rightarrow[0,1]$ gives rise to a random graph $\mathrm{G}(\mathrm{n}, \mathrm{w})$ as follows. Vertices x_{1}, \ldots, x_{n} are chosen uniformly at random from $[0,1]$, and each pair of vertices x_{i}, x_{j} is joined by an edge with probability $w\left(x_{i}, x_{j}\right)$, independently. This random graph has a uniform linear embedding if there exist an embedding function π and a probability function f so that for all $x, y \in[0,1], w(x, y)=f(|\pi(x)-\pi(y)|)$. In other words, the random graph can be modelled as a process of selecting vertices from $[0,1]$ according to a given distribution described by π, and adding edges according to a probability that is determined by the distance between the vertices. We explore the question of how to recognize whether a given random graph $G(n, w)$ has a uniform linear embedding. This is joint work with Huda Chuangpishit and Mahya Ghandehari.

