FLAVIA COLONNA, George Mason University

Norm and essential norms of weighted composition operators acting on reproducing kernel Hilbert spaces of analytic functions.

Let ψ be an analytic function on the open unit disk \mathbb{D} and let φ be an analytic self-map of \mathbb{D} . The weighted composition operator with symbols ψ and φ is defined on the space of analytic functions on \mathbb{D} as

$$W_{\psi,\varphi}f = \psi \cdot (f \circ \varphi).$$

Let \mathcal{H} be a reproducing kernel Hilbert space of analytic functions on the unit disk. In this talk, we determine conditions on \mathcal{H} and its kernel K which allow us to characterize the bounded and the compact weighted composition operators from \mathcal{H} into weighted-type Banach spaces. We obtain an exact formula for the operator norm and an approximation of the essential norm of the operators mapping into the space H^{∞}_{μ} , where the weight μ is a positive continuous function on \mathbb{D} . We obtain an exact formula of the essential norm for a large class of weighted Hardy Hilbert spaces. We also discuss the case when the Hilbert space \mathcal{H} is replaced by a general Banach space of analytic functions such that all point evaluations are bounded linear functionals. This is joint work with Maria Tjani.