KEVIN HARE, University of Waterloo
Simultaneous beta-expansions
We say that x has a beta-expansion with respect to β if there exists a sequence of a_{i} such that $x=\sum a_{i} \beta^{-i}$. It is known that if $\beta>1$ is sufficiently close to 1 , and the digits a_{i} are restricted to ± 1 then all x sufficiently close to 0 have an uncountable number of beta-expansions.
What is surprising is that for any x_{1} and x_{1} sufficiently close to 0 and $\beta_{1} \neq \beta_{2}$ sufficiently close to 1 we can find a beta-expansion that is simultaneously a beta-expansion for x_{1} in terms of β_{1} and is a beta-expansion for x_{2} in terms of β_{2}.
We will discuss the proof of this result, the generalization of this to higher numbers of simultaneous beta-expansions, and the limits of these techniques.

