MURRAY BREMNER, University of Saskatchewan
The fundamental invariants of $3 \times 3 \times 3$ arrays
We use computer algebra to determine explicitly the three fundamental invariants of a $3 \times 3 \times 3$ array over \mathbb{C} as polynomials in the 27 variables $x_{i j k}$ for $1 \leq i, j, k \leq 3$. By the work of Vinberg on θ-groups, it is known that these invariants are homogeneous polynomials of degrees 6,9 and 12 with respectively 1152, 9216 and 209061 terms. These three polynomials freely generate the algebra of invariants for $\mathfrak{s l}(3, \mathbb{C})^{3}$ acting irreducibly on its natural representation $\left(\mathbb{C}^{3}\right)^{\otimes 3}$. We find compact expressions for these invariants in terms of the orbits of the finite group $\left(S_{3} \times S_{3} \times S_{3}\right) \rtimes S_{3}$ acting on monomials of weight zero. It remains an open problem to express the hyperdeterminant of degree 36 (in the sense of Gelfand et al.) in terms of these fundamental invariants. (This is joint work with Jiaxiong Hu.)

