KEN STEPHENSON, University of Tennessee

Quasiconformal Mappings via Circle Packing: a Conjecture
Suppose K is a triangulation of a region G in the plane. Associated with K is a maximal packing P in the unit disc \mathbb{D}, that is, a configuration of circles with the tangency pattern encoded in K. In particular, P gives an embedding K^{\prime} of K in \mathbb{D}. Intensive experiments suggest that when K is an appropriately random triangulation of G, then the piecewise affine map $f: K^{\prime} \rightarrow K$ approximates the conformal map from \mathbb{D} to G. If this is the case, then by biasing the random triangulation K using the ellipse field for a Beltrami coefficient μ, one should be able to approximate the quasiconformal mapping from \mathbb{D} to G with dilatation μ. Conjectured results will be illuminated by visual experiments.

