Let G be a connected complex Lie group and H a closed complex subgroup. There is a Lie theoretic fibration $\pi : G/H \to G/J$ with G/J holomorphically separable and $\mathcal{O}(G/H) \simeq \pi^* \mathcal{O}(G/J)$ called the holomorphic reduction of the complex homogeneous manifold G/H. In general, G/J is not Stein, e.g., $\mathbb{C}^n \setminus \{0\}$ for $n > 1$, and examples show that one need not have $\mathcal{O}(J/H) \simeq \mathbb{C}$.

We will prove that if G/H is pseudoconvex and G is reductive, then

1.) the base G/J of its holomorphic reduction is Stein and $\mathcal{O}(J/H) \simeq \mathbb{C}$, and

2.) if additionally, G/H is Kähler with $\mathcal{O}(G/H) \simeq \mathbb{C}$, then G/H is a flag manifold, \overline{H}/H is a Cousin group and $G/H = G/\overline{H} \times \overline{H}/H$ is a product, where \overline{H} denotes the Zariski closure of H in G.

The proof employs ideas of Hirschowitz (1975) in order to show the existence of a certain foliation of non-Stein pseudoconvex domains spread over complex homogeneous manifolds. This generalizes results of Kim-Levenberg-Yamaguchi (2011).

(Based on joint work with Christian Miebach and Karl Oeljeklaus.)