ADAM FELIX, University of Alberta

A Problem of Fomenko's related to Artin's Conjecture on Primitive Roots
Let a be a fixed, squarefree integer. In 1927, Artin conjectured that a is a primitive root modulo p for a positive proportion of primes up to x. Hooley has shown that this is true upon the GRH. We view this conjecture in a different light and consider a generalization. In particular, let $\left.i_{a}(p):=\left[(\mathbb{Z} / p \mathbb{Z})^{*}:<\operatorname{amodp}\right\rangle\right]$. Then, we consider summations of the form

$$
\sum_{p \leq x} f\left(i_{a}(p)\right)
$$

where $f: \mathbb{N} \rightarrow \mathbb{C}$ is a function. We will see that for a large class of functions, the above summation satisfies

$$
\sum_{p \leq x}\left(\log \left(i_{a}(p)\right)\right)^{\alpha}=c_{a} \pi(x)+O\left(x /(\log x)^{2-\varepsilon-\alpha}\right)
$$

for any $\alpha \in(0,1)$ and $\varepsilon>0$, and where c_{a} is a constant dependent on a, and

$$
\sum_{p \leq x} \tau\left(i_{a}(p)\right)=c_{a}^{\prime} \pi(x)+O\left(x /(\log x)^{2-\varepsilon}\right)
$$

for any $\varepsilon>0$ and where c_{a}^{\prime} is a constant dependent on a.

