DAVID PIKE, Memorial University of Newfoundland *Hamilton Cycles in 1-Block-Intersection Graphs*

Given a BIBD (v, k, λ) , \mathcal{D} say, with $\lambda > 1$ and having block set \mathcal{B} , the *i*-block-intersection graph of \mathcal{D} is the graph $G_i(\mathcal{D})$ having vertex set \mathcal{B} such that two vertices b_1 and b_2 are adjacent in $G_i(\mathcal{D})$ if and only if $|b_1 \cap b_2| = i$. It has been known since 1999 that the 1-block-intersection graph of any λ -fold triple system on $v \ge 12$ points is Hamiltonian. We now show that the 1-block-intersection graphs of BIBD (v, k, λ) with block size k = 4 are Hamiltonian when v is sufficiently large.

This is joint work with Andrew Jesso and Nabil Shalaby of Memorial University of Newfoundland.