LARS KADISON, University of Pennsylvania *Depth of a Subgroup*

A subalgebra pair of semisimple complex algebras $B \subset A$ with inclusion matrix M is depth two if $MM^tM < nM$ for some positive integer n and all corresponding entries. If A and B are the group algebras of finite group-subgroup pair H < G, the induction-restriction table for irreducible characters equals M, and $S = MM^t$ satisfies $S^2 < nS$ iff the subgroup H is depth three in G; similarly depth n > 3 by successive right multiplications of this inequality with alternately M and M^t . For example, the pair of permutation groups $S_n < S_{n+1}$ has depth 2n - 1 (or more). In joint work with Kuelshammer and Burciu, we show that a subgroup H has depth 2n + 2 if its core is an intersection of H with n conjugates of H.