LARS KADISON, University of Pennsylvania

Depth of a Subgroup
A subalgebra pair of semisimple complex algebras $B \subset A$ with inclusion matrix M is depth two if $M M^{t} M<n M$ for some positive integer n and all corresponding entries. If A and B are the group algebras of finite group-subgroup pair $H<G$, the induction-restriction table for irreducible characters equals M, and $S=M M^{t}$ satisfies $S^{2}<n S$ iff the subgroup H is depth three in G; similarly depth $n>3$ by successive right multiplications of this inequality with alternately M and M^{t}. For example, the pair of permutation groups $S_{n}<S_{n+1}$ has depth $2 n-1$ (or more). In joint work with Kuelshammer and Burciu, we show that a subgroup H has depth $2 n+2$ if its core is an intersection of H with n conjugates of H.

