## PETER DANZIGER, Ryerson Unversity

On bipartite 2-factorisations of $K_{n}-I$ and the Oberwolfach problem
It is shown that if $F_{1}, F_{2}, \ldots, F_{t}$ are bipartite 2-regular graphs of order $n$ and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{t}$ are non-negative integers such that $\alpha_{1}+\alpha_{2}+\cdots+\alpha_{t}=\frac{n-2}{2}, \alpha_{1} \geq 3$ is odd, and $\alpha_{i}$ is even for $i=2,3, \ldots, t$, then there exists a 2-factorisation of $K_{n}-I$ in which there are exactly $\alpha_{i} 2$-factors isomorphic to $F_{i}$ for $i=1,2, \ldots, t$. Taking $t=1$ this result completes the solution of the Oberwolfach problem for any collection of even sized cycles.
This is joint work with Darryn Bryant, The University of Queensland.

