DANIELA SILVSAN, Memorial University, St John's, Newfoundland

The intersection spectrum of Skolem sequences and its applications to λ-fold cyclic triple systems
A Skolem sequence of order n is a sequence $S_{n}=\left(s_{1}, s_{2}, \ldots, s_{2 n}\right)$ of $2 n$ integers containing each of the symbols $1,2, \ldots, n$ exactly twice, such that two occurrences of the integer $j \in\{1,2, \ldots, n\}$ are separated by exactly $j-1$ symbols. We prove, with few possible exceptions, that there exists two Skolem sequences of order n with $0,1,2, \ldots, n-3$ or n pairs in common. Using this result, we determine, with few possible exceptions the fine structure of a cyclic three-fold triple systems, for $v \equiv 1,7$ $(\bmod 24)$. We also determine, with few exceptions, the fine structure of a cyclic four-fold triple systems, for $v \equiv 1,7(\bmod 24)$. Then, we extend these results to the fine structure of a λ-fold directed triple system and a λ-fold Mendelsohn triple system. We also determine, the number of possible repeated base blocks in a cyclic two-fold triple system, a directed triple system and a Mendelsohn triple system, for $v \equiv 1,3(\bmod 6)$.

