JONGHAE KEUM, KIAS, Hoegiro 187, Seoul 130-722, Korea
Rational homology projective planes
A normal projective complex surface is called a rational homology projective plane (rhpp) if it has the same Betti numbers with the complex projective plane. It is known that a rhpp with quotient singularities has at most 5 singular points. So far all known examples have at most 4 singular points. In this talk, we prove that such a rhpp has at most 4 singular points except one case. The exceptional case comes from Enriques surfaces with a special configuration of 9 smooth rational curves. This answers a question posed by J. Kollár.
We also obtain a similar result in the symplectic orbifold case.
This is related to a conjecture posed by D. Montgomery and C. T. Yang in the 1970s about differentiable circle actions on the 5-dimensional sphere $S^{5}$ with finitely many non-free orbits. Some progress on this problem will also be discussed.

